// Example 2.2 clear; clc; close; format('v',7); // Given data V1=110;//in volt Z1=2+%i*3;//in ohm Zeq_rotor=2+%i*3;//in ohm Xo=50;//in ohm(Magnetising impedence) Losses=25;//in watt(friction & voltage loss) S=5/100;//slip //Calculations R1=real(Z1);//in Ω X1=imag(Z1);//in Ω R2=real(Zeq_rotor);//in Ω X2=imag(Zeq_rotor);//in Ω r2=R2/2;//in Ω x2=X2/2;//in Ω xo=Xo/2;//in ohm Zf=%i*xo*(r2/S+%i*x2)/(r2/S+%i*(xo+x2));//in ohm Zb=%i*xo*(r2/(2-S)+%i*x2)/(r2/(2-S)+%i*(xo+x2));//in ohm Zeq=Z1+Zf+Zb;//in ohm I1=V1/Zeq;//in Ampere InputCurrent=abs(I1);//in Ampere disp(InputCurrent,"Input current in Ampere : "); PF=cos(atan(imag(I1),real(I1))); disp(PF,"Power factor(lagging) : "); Vf=I1*Zf;//in volt I2f=Vf/(r2/S+%i*x2);//in Ampere Vb=I1*Zb;//in Volt I2b=Vb/(r2/(2-S)+%i*x2);//in Ampere Pf=abs(I2f)^2*r2/S;//in watts Pb=13.88;//in watts Pm=(1-S)*(Pf-Pb);//in watts Pout=Pm-Losses;//in watts Pin=V1*abs(I1)*PF;//in watts Eff=Pout/Pin*100;//in % disp(Eff,"Efficiency in % : ");