// Scilab code Ex2.7: Pg.50 (2005) clc; clear; u = 1.660e-27; // Atomic mass unit M_U = 236.045563; // Atomic mass of Uranium, u M_Rb = 89.914811; // Atomic mass of Rubidium, u M_Cs = 142.927220; // Atomic mass of Caesium, u m_n = 1.008665; // Mass of neutons, u // Part (a) printf("\nU(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1)"); printf("\nSo three neutrons are produced per fission.\n"); // Part (b) delta_M = (M_U - (M_Rb + M_Cs + 3*m_n))*u; // Combined mass of all products, kg printf("\nCombined mass of all products = %6.4fe-28 kg\n", delta_M*1e+28); // Part (c) // For simplification let velocity of light = 1 m/s c = 1; // Velocity of light, m/s // Since 1u = 931.5 MeV/(c^2), therefore Q = (delta_M/u)*931.5*(c^2); // Energy given out per fission event, MeV printf("\nEnergy given out per fission event = %5.1f MeV\n", Q); // Part (d) N = ((6.02e23)*1000)/236; // Number of nuclei present efficiency = 0.40; E = efficiency*N*Q*(4.45e-20); // Total energy released, kWh printf("\nTotal energy released = %4.2fe+06 kWh\n", E*1e-06); printf("\nThis amount of energy will keep a 100-W lightbulb burning for %d years", E*1000/(100*24*365)); // Result // U(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1) // So three neutrons are produced per fission. // Combined mass of all products = 2.9471e-28 kg // Energy given out per fission event = 165.4 MeV // Total energy released = 7.51e+06 kWh // This amount of energy will keep a 100-W lightbulb burning for 8571 years