//CHAPTER 5 ILLUSRTATION 8 PAGE NO 166 //TITLE:Inertia Force Analysis in Machines //figure 5.4 clc clear pi=3.141 D=.25// diameter of vertical cylinder of diesel engine in m L=.40// stroke length in m r=L/2 n=4 N=300// speed of the engine in rpm teeta=60// angle of inclination of crank in degrees mR=200// mass of reciprocating parts in kg g=9.81// acceleration due to gravity l=.8// length of connecting rod in m c=14// compression ratio=v1/v2 p1=.1*10^6// suction pressure in n/m^2 i=1.35// index of the law of expansion and compression //============================================================== Vs=pi/4*D^2*L// swept volume in m^3 w=2*pi*N/60// angular speed in rad/s Vc=Vs/(c-1) V3=Vc+Vs/10// volume at the end of injection of fuel in m^3 p2=p1*c^i// final pressure in N/m^2 p3=p2// from figure x=r*((1-cosd(teeta)+(sind(teeta))^2/(2*n)))// the displacement of the piston when the crank makes an angle 60 degrees with T.D.C Va=Vc+pi*D^2*x/4 pa=p3*(V3/Va)^i p=pa-p1// difference of pressues on 2 sides of piston in N/m^2 Fl=p*pi*D^2/4// net load on piston in N Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N Fp=Fl-Fi+mR*g// piston effort in N phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees T=Fp*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m printf('Effective turning moment on the crank shaft= %.3f N-m',T)