// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN // TURAN GONEN // CRC PRESS // SECOND EDITION // CHAPTER : 9 : SYMMETRICAL COMPONENTS AND FAULT ANALYSIS // EXAMPLE : 9.6 : clear ; clc ; close ; // Clear the work space and console // GIVEN DATA kv = 115 ; // Line voltage in kV // For case (a) h_11 = 90 ; // GMD b/w ground wires & their images r_a = 0.037667 ; // Radius in metre p_aa = 11.185 * log(h_11/r_a) ; // unit is F^(-1)m p_bb = p_aa ; p_cc = p_aa ; l_12 = sqrt(22 + (45 + 37)^2) ; D_12 = sqrt(2^2 + 8^2) ; // GMR in ft p_ab = 11.185*log(l_12/D_12) ; // unit is F^(-1)m p_ba = p_ab ; D_13 = sqrt(3^2 + 13^2) ; // GMR in ft l_13 = 94.08721051 ; p_ac = 11.185 * log(l_13/D_13) ; // unit is F^(-1)m p_ca = p_ac ; l_23 = 70.72279912 ; D_23 = sqrt(5^2 + 11^2) ; // GMR in ft p_bc = 11.185 * log(l_23/D_23) ; // unit is F^(-1)m p_cb = p_bc ; P_abc = [p_aa p_ab p_ac ; p_ba p_bb p_bc ; p_ca p_cb p_cc] ; // Matrix of potential coefficients // For case (b) C_abc = inv(P_abc) ; // Matrix of maxwells coefficients // For case (c) a = 1*exp(%i*120*%pi/180) ; // By symmetrical components theory to 3-Φ system A = [1 1 1; 1 a^2 a ;1 a a^2] ; C_012 = inv(A) * C_abc * A ; // Matrix of sequence capacitances // For case (d) C_01 = C_012(1,2) ; C_11 = C_012(2,2) ; C_21 = C_012(3,2) ; d_0 = C_01/C_11 ; // Zero-sequence electrostatic unbalances . Refer equ 9.115 d_2 = -C_21/C_11 ; // Negative-sequence electrostatic unbalances . Refer equ 9.116 // DISPLAY RESULTS disp("EXAMPLE : 9.6 : SOLUTION :-") ; printf("\n (a) Matrix of potential coefficients , [P_abc] = \n") ; disp(P_abc) ; printf("\n (b) Matrix of maxwells coefficients , [C_abc] = \n") ; disp(C_abc) ; printf("\n (c) Matrix of sequence capacitances , [C_012] = \n") ; disp(C_012) ; printf("\n (d) Zero-sequence electrostatic unbalances , d_0 = %.4f<%.1f \n",abs(d_0),atand( imag(d_0),real(d_0) )) ; printf("\n Negative-sequence electrostatic unbalances , d_2 = %.4f<%.1f \n",abs(d_2),atand( imag(d_2),real(d_2) )) ;