// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN // TURAN GONEN // CRC PRESS // SECOND EDITION // CHAPTER : 6 : DIRECT-CURRENT POWER TRANSMISSION // EXAMPLE : 6.5 : clear ; clc ; close ; // Clear the work space and console // GIVEN DATA X_C = 6.2292017 ; // commutating reactance when all 3 breakers are closed E_LN = 53.418803 * 10^3 ; // Wye-side volt rating V_d0 = 125 * 10^3 ; // voltage rating of bridge rectifier in V V_dr0 = V_d0 ; // Max continuos no-load direct voltage in V I = 1600 ; // current rating of bridge rectifier in A I_d = I ; // Max continuous current nom_kV = sqrt(3) * E_LN ; // Nominal kV_L-L X_tr = 0.10 ; //impedance of rectifier transformer in pu Ω alpha = 0 ; // delay angle α = 0 degree // CALCULATIONS // For case (a) E_m = sqrt(2) * E_LN ; u = acosd(1 - (2*X_C*I_d)/(sqrt(3)*E_m)); // overlap angle when delay angle α = 0 degree // For case (b) R_C = (3/%pi) * X_C ; // Equ commutation resistance per phase V_d = V_d0 * cosd(alpha) - R_C * I_d ; // dc voltage of rectifier in V // For case (c) cos_theta = V_d/V_d0 ; // Displacement or power factor of rectifier // For case (d) Q_r = V_d * I_d * tand( acosd(cos_theta) ) ; // magnetizing var I/P // DISPLAY RESULTS disp("EXAMPLE : 6.5 : SOLUTION :-") ; printf("\n (a) Overlap angle u of rectifier, u = %.2f degree\n",u) ; printf("\n (b) The dc voltage V_dr of rectifier, V_dr = %.2f V \n",V_d) ; printf("\n (c) Displacement factor of rectifier, cosθ = %.3f \n",cos_theta) ; printf("\n and θ = %.1f degree \n ",acosd(cos_theta)) ; printf("\n (d) Magnetizing var input to rectifier, Q_r = %.4e var \n",Q_r) ; printf("\n NOTE : In case(d) 7.6546e+07 var is same as 7.6546*10^7 var = 76.546 Mvar \n") ;