// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN // TURAN GONEN // CRC PRESS // SECOND EDITION // CHAPTER : 6 : DIRECT-CURRENT POWER TRANSMISSION // EXAMPLE : 6.4 : clear ; clc ; close ; // Clear the work space and console // GIVEN DATA E_LN = 53.418803 ; // Wye-side kV rating . From exa 6.3 I = 1600 ; // current rating of bridge rectifier in A I_d = I ; // Max continuous current in A X_tr = 0.10 ; // impedance of rectifier transformer in pu Ω // For case (a) sc_MVA1 = 4000 ; // short-ckt MVA // For case (b) sc_MVA2 = 2500 ; // short-ckt MVA // For case (c) sc_MVA3 = 1000 ; // short-ckt MVA // CALCULATIONS nom_kV = sqrt(3) * E_LN ; // Nominal kV_L-L I_1ph = sqrt(2/3) * I_d ; // rms value of wye-side phase current E_LN1 = E_LN * 10^3 ; // Wye-side rating in kV X_B = (E_LN1/I_1ph) ; // Associated reactance base in Ω // For case (a) X_sys1 = nom_kV^2/sc_MVA1 ; // system reactance in Ω X_tra = X_tr * X_B ; // Reactance of rectifier transformer X_C = X_sys1 + X_tra ; // Commutating reactance in Ω // For case (b) X_sys2 = nom_kV^2/sc_MVA2 ; // system reactance in Ω X_C2 = X_sys2 + X_tra ; // Commutating reactance in Ω // For case (b) When breaker 1 & 2 are open X_sys3 = nom_kV^2/sc_MVA3 ; // system reactance in Ω X_C3 = X_sys3 + X_tra ; // Commutating reactance in Ω // DISPLAY RESULTS disp("EXAMPLE : 6.4 : SOLUTION :-") ; printf("\n (a) Commutating reactance When all three breakers are closed, X_C = %.4f Ω \n",X_C) ; printf("\n (b) Commutating reactance When breaker 1 is open, X_C = %.4f Ω \n",X_C2) ; printf("\n (c) Commutating reactance When breakers 1 and 2 are open, X_C = %.4f Ω \n",X_C3) ;