// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN // TURAN GONEN // CRC PRESS // SECOND EDITION // CHAPTER : 5 : UNDERGROUND POWER TRANSMISSION AND GAS-INSULATED TRANSMISSION LINES // EXAMPLE : 5.2 : clear ; clc ; close ; // Clear the work space and console // GIVEN DATA r = 1 ; // Radius of conductor in cm t_1 = 2 ; // Thickness of insulation layer in cm r_1 = r + t_1 ; r_2 = 2 ; // Thickness of insulation layer in cm . r_2 = t_1 = t_2 R = r_1 + r_2 ; K_1 = 4 ; // Inner layer Dielectric constant K_2 = 3 ; // Outer layer Dielectric constant kv = 19.94 ; // potential difference b/w inner & outer lead sheath in kV // CALCULATIONS // E_1 = 2q/(r*K_1) & E_2 = 2q/(r_1*K_2) . Let E = E_1/E_2 E = ( r_1 * K_2 )/( r * K_1 ) ; // E = E_1/E_2 V_1 = poly(0,'V_1') ; // defining unknown V_1 E_1 = V_1/( r * log(r_1/r) ) ; V_2 = poly(0,'V_2') ; // defining unknown V_2 V_2 = kv - (V_1) ; E_2 = V_2/( r_1 * log(R/r_1) ) ; E_3 = E_1/E_2 ; // Equating E = E_3 . we get the value of V_1 V_1 = 12.30891068 ; // Voltage in kV E_1s = V_1/( r * log(r_1/r) ) ; // Potential gradient at surface of conductor in kV/cm . E_1 = E_1s // DISPLAY RESULTS disp("EXAMPLE : 5.2 : SOLUTION :-") ; printf("\n Potential gradient at the surface of conductor , E_1 = %.2f kV/cm \n",E_1s) ;