// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN // TURAN GONEN // CRC PRESS // SECOND EDITION // CHAPTER : 5 : UNDERGROUND POWER TRANSMISSION AND GAS-INSULATED TRANSMISSION LINES // EXAMPLE : 5.16 : clear ; clc ; close ; // Clear the work space and console // GIVEN DATA n = 40 ; // useful life in years i = 10/100 ; // carrying charge rate A_P = (i*(1+i)^n)/((1 + i)^n - 1) ; // Refer page 642 A_F = 0.00226 ; // A_F = A/F pr_tax = 3/100 ; // Annual ad property taxes is 3% of 1st costs of each alternative // FOR OVERHEAD TRANSMISSION L_OH = 50 ; // length of route A in mi cost_b_A = 1 * 10^6 ; // cost per mile to bulid in $ salvage_A = 2000 ; // salvage value per mile at end of 40 years cost_mait_OH = 500 ; // cost in $ per mile to maintain // SUBMARINE TRANSMISSION LINE L_S = 30 ; // length of route B in mi cost_b_B = 4*10^6 ; // cost per mile to bulid in $ salvage_B = 6000 ; // salvage value per mile at end of 40 years cost_mait_S = 1500 ; // cost in $ per mile to maintain // GIL TRANSMISSION L_GIL = 20 ; // length of route C in mi cost_b_C = 7.6*10^6 ; // cost per mile to bulid in $ salvage_C = 1000 ; // salvage value per mile at end of 40 years cost_mait_GIL = 200 ; // cost in $ per mile to maintain savings = 17.5*10^6 ; // relative savings in power loss per year in $ // CALCULATIONS n = 25 ; // useful life in years i = 20/100 ; // carrying charge rate p = ((1 + i)^n - 1)/(i*(1+i)^n) ; // p = P/A // FOR OVERHEAD TRANSMISSION P_OH = cost_b_A * L_OH ; // first cost of 500 kV OH line in $ F_OH = salvage_A * L_OH ; // Estimated salvage value in $ A_1 = P_OH * A_P - F_OH * A_F ; // Annual equivalent cost of capital in $ A_2 = P_OH * pr_tax + cost_mait_OH * L_OH ; // annual equivalent cost of tax and maintainance in $ A = A_1 + A_2 ; // total annual equi cost of OH line in $ // SUBMARINE TRANSMISSION LINE P_S = cost_b_B * L_S ; // first cost of 500 kV OH line in $ F_S = salvage_B * L_S ; // Estimated salvage value in $ B_1 = P_S * A_P - F_S * A_F ; // Annual equivalent cost of capital in $ B_2 = P_S * pr_tax + cost_mait_S * L_S ; // annual equivalent cost of tax and maintainance in $ B = B_1 + B_2 ; // total annual equi cost of OH line in $ // GIL TRANSMISSION P_GIL = cost_b_C * L_GIL ; // first cost of 500 kV OH line in $ F_GIL = salvage_C * L_GIL ; // Estimated salvage value in $ C_1 = P_GIL * A_P - F_GIL * A_F ; // Annual equivalent cost of capital in $ C_2 = P_GIL * pr_tax + cost_mait_GIL * L_GIL ; // annual equivalent cost of tax and maintainance in $ C = C_1 + C_2 ; // total annual equi cost of OH line in $ A_net = C - savings ; // Total net annual equi cost of GIL // DISPLAY RESULTS disp("EXAMPLE : 5.16 : SOLUTION :-") ; printf("\n OVERHEAD TRANSMISSION LINE : \n") ; printf("\n Annual equivalent cost of capital invested in line , A_1 = $ %d \n",A_1) ; printf("\n Annual equivalent cost of Tax and maintainance , A_2 = $ %d \n",A_2) ; printf("\n Total annual equivalent cost of OH transmission , A = $ %d \n",A) ; printf("\n \n SUBMARINE TRANSMISSION LINE : \n") ; printf("\n Annual equivalent cost of capital invested in line , A_1 = $ %d \n",B_1) ; printf("\n Annual equivalent cost of Tax and maintainance , A_2 = $ %d \n",B_2) ; printf("\n Total annual equivalent cost of Submarine power transmission , A = $ %d \n",B) ; printf("\n \n GIL TRANSMISSION LINE : \n") ; printf("\n Annual equivalent cost of capital invested in line , A_1 = $ %d \n",C_1) ; printf("\n Annual equivalent cost of Tax and maintainance , A_2 = $ %d \n",C_2) ; printf("\n Total annual equivalent cost of Submarine power transmission , A = $ %d \n",C) ; printf("\n Total net equivalent cost of GIL transmission = $ %d \n",A_net) ; printf("\n \n The result shows use of GIL is the best choice \n") ; printf("\n The next best alternative is Overhead transmission line \n") ;