clc clear //INPUT DATA cp1=1.00;//specific entropy in kJ/kgK cpv=0.733;//specific entropy in kJ/kgK t21=303;//condenser temperature in K t1=265;//evaporator temperature in K t31=293;//subcooled temperature in K p1=2.354;//pressure in Bar p2=7.451;//pressure in Bar hf1=28.72;//enthalpy in kJ/kg hg1=184.07;//enthalpy in kJ/kg hf2=64.59;//enthalpy in kJ/kg hg2=199.62;//enthalpy in kJ/kg sf1=0.1149;//entropy in kJ/kgK sf2=0.24;//entropy in kJ/kgK sg1=0.7007;//entropy in kJ/kgK sg2=0.6853;//entropy in kJ/kgK vg1=0.079;//entropy in kJ/kgK vg2=0.0235;//entropy in kJ/kgK v1b=0.772;//entropy in kJ/kgK t2=309.43;//temperature in K //CALCULATIONS //(i)WET COMPRESSION x=((sg2-sf1)/(sg1-sf1));//fraction h1b=hf1+x*(hg1-hf1);//enthalpy in kJ/kg h2=hg2+cpv*(t2-t21);//enthalpy in kJ/kg s1a=sg1+cpv*log(271/t1);//entropy in kJ/kgK t2a=(s1a-sg1)/(cpv*t21);//temperature in K h2a=hg2+cpv*(t2a-t21);//enthalpy in kJ/kg h1a=hg1+cpv*(271-t1);//enthalpy in kJ/kg h31=hf2-cpv*(t21-298);//enthalpy in kJ/kg Re1=h1b-hf2;//Refrigeration effect in wet condition Re2=hg1-hf2;//Refrigeration effect in wet condition Re3=h1b-hf2;//Refrigeration effect in wet condition Re4=hg1-hf2;//Refrigeration effect in wet condition wn1=hg2-h1b;//net workdone in kJ/kg wn2=h2-hg1;//net workdone in kJ/kg wn3=h2a-hg1;//net workdone in kJ/kg wn4=h2-hg1;//net workdone in kJ/kg cop1=Re1/wn1;//COP cop2=Re2/wn2;//COP cop3=Re3/wn3;//COP cop4=Re4/wn4;//COP m1=2100/Re1;//mass flow rate m2=2100/Re2;//mass flow rate m3=2100/Re3;//mass flow rate m4=2100/Re4;//mass flow rate P1=m1*wn1/60;//Power in kW P2=m2*wn2/60;//Power in kW P3=m3*wn3/60;//Power in kW P4=m4*wn4/60;//Power in kW Pt1=P1/10;//Power per TR Pt2=P2/10;//Power per TR Pt3=P3/10;//Power per TR Pt4=P4/10;//Power per TR d1=((m1*v1b/0.00084883)^(1/3))/100;//displacement in m d2=((m2*vg1/0.00084883)^(1/3))/100;//displacement in m d3=((m3*vg1/0.00084883)^(1/3))/100;//displacement in m d4=((m4*vg1/0.00084883)^(1/3))/100;//displacement in m l1=1.5*d1;//stroke in m l2=1.5*d2;//stroke in m l3=1.5*d3;//stroke in m l4=1.5*d4;//stroke in m //OUTPUT printf('((i)WET COMPRESSION \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop1,P1,d1,l1,m1) printf('((ii)DRY COMPRESSION \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop2,P2,d2,l2,m2) printf('((iii)SUPERHEATED \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop3,P3,d3,l3,m3) printf('((iv)DRY COMPRESSION AND SUBCOOLED \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n ',cop4,P4,d4,l4,m4)