//Chapter-2, Illustration 22, Page 81 //Title: Gas Power Cycles //============================================================================= clc clear //INPUT DATA C1=280;//Velocity of aircraft in m/s P1=48;//Pressure at point 1 kPa T1=260;//Temperature at point 1 in K rp=13;//Pressure ratio T4=1300;//Temperature at point 4 in K Cp=1005;//Specific heat at constant pressure in J/kg y=1.4;//Ratio of specific heats //CALCULATIONS x=(y-1)/y;//Ratio T2=T1+((C1^2)/(2*Cp));//Temperature at point 2 in K P2=P1*((T2/T1)^(1/x));//Pressure at point 2 in kPa P3=rp*P2;//Pressure at point 3 in kPa P4=P3;//Pressure at point 4 in kPa T3=T2*(rp^x);//Temperature at point 3 in K T5=T4-T3+T2;//Temperature at point 5 in K P5=P4*((T5/T4)^(1/x));//Pressure at point 5 in kPa P6=P1;//Pressure at point 6 in kPa T6=T5*((P6/P5)^x);//Temperature at point 6 in K C6=sqrt(2*Cp*(T5-T6));//Velocity of air at nozzle exit in m/s W=(C6-C1)*C1;//Propulsive power in J/kg Q=Cp*(T4-T3);//Total heat transfer rate in J/kg nP=(W/Q)*100;//Propulsive efficiency //OUTPUT mprintf('Pressure at the turbine exit is %3.1f kPa \n Velocity of exhaust gases are %3.1f m/s \n Propulsive efficiency is %3.1f percent',P5,C6,nP) //==============================END OF PROGRAM=================================