//Chapter-2, Illustration 20, Page 79 //Title: Gas Power Cycles //============================================================================= clc clear //INPUT DATA P1=0.1;//Pressure at point 1 in MPa T1=303;//Temperature at point 1 in K T3=1173;//Temperature at point 3 in K rp=6;//Pressure ratio nC=0.8;//Compressor efficiency nT=nC;//Turbine efficiency e=0.75;//Regenerator effectiveness y=1.4;//Ratio of specific heats Cp=1.005;//Specific heat at constant pressure in kJ/kg-K //CALCULATIONS x=(y-1)/y;//Ratio T2s=T1*(rp^x);//Temperature at point 2s in K T4s=T3/(rp^x);//Temperature at point 4s in K DTa=(T2s-T1)/nC;//Difference in temperatures at point 2 and 1 in K DTb=(T3-T4s)*nT;//Difference in temperatures at point 3 and 4 in K wT=Cp*DTb;//Turbine work in kJ/kg wC=Cp*DTa;//Compressor work in kJ/kg T2=DTa+T1;//Temperature at point 2 in K q1=Cp*(T3-T2);//Heat supplied in kJ/kg nth1=((wT-wC)/q1)*100;//Cycle efficiency without regenerator T4=T3-DTb;//Temperature at point 4 in K T5=T2+(e*(T4-T2));//Temperature at point 5 in K q2=Cp*(T3-T5);//Heat supplied with regenerator in kJ/kg nth2=((wT-wC)/q2)*100;//Cycle efficiency with regenerator p=((nth2-nth1)/nth1)*100;//Percentage increase due to regeneration //OUTPUT mprintf('Percentage increase in the cycle efficiency due to regeneration is %3.2f percent',p) //==============================END OF PROGRAM=================================