// To design Ayrton shunt // Modern Electronic Instrumentation And Measurement Techniques // By Albert D. Helfrick, William D. Cooper // First Edition Second Impression, 2009 // Dorling Kindersly Pvt. Ltd. India // Example 4-2 in Page 57 clear; clc; close; // Given data I_1 = 1; //Full scale currents of the ammeter in amp I_2 = 5; I_3 = 10; R_m = 50; //Internal resistance of the movement(the coil) in ohm I_m = 1*(10^-3); //Full scale deflection of the movement in ampere //Calculations // On the 1-A range: I_s1 = I_1 - I_m; // calculating current through shunt //Using the eq. R_s = I_m * R_m/ I_s //1 R_a +R_b +R_c = I_m * R_m/ I_s; // As (R_a +R_b +R_c) are parallel with R_m // On the 5-A range I_s2 = I_2 - I_m; //2 R_a +R_b = I_m * (R_c +R_m)/ I_s; // As (R_a+R_b) in parallel with (R_c+R_m) // On the 10-A range I_s3 = I_3 - I_m; //3 R_a = I_m * (R_b +R_c +R_m)/ I_s; // As R_a is parallel with (R_b +R_c +R_m) //Solving the 3 simultaneous linear equations function y = rr(R); y(1)= R(1) +R(2) +R(3) - (I_m * R_m/ I_s1); y(2)= R(1) +R(2) -(I_m * (R(3) +R_m)/ I_s2); y(3)= R(1) -(I_m * (R(2) +R(3) +R_m)/ I_s3); endfunction answer = fsolve([0.1;0.1;0.1],rr); R_a = answer([1]); R_b = answer([2]); R_c = answer([3]); disp('The different resistors used for the ayrton shunt for different ranges are:'); printf("R_a = %f ohm\n",R_a); printf("R_b = %f ohm\n",R_b); printf("R_c = %f ohm",R_c); //Result // The different resistors used for the ayrton shunt for different ranges are: // R_a = 0.005005 ohm // R_b = 0.005005 ohm // R_c = 0.040040 ohm