// Scilab Code Ex6.16: Page-205 (2006) clc; clear; e = 1.6e-019; // Charge on an electron, C mu = 1400e-04; // Mobility of electron, metre-square per volt per sec l = 300-06; // Length of the n-type semiconductor, m w = 100-06; // Width of the n-type semiconductor, m t = 20-06; // Thickness of the n-type semiconductor, m N_D = 4.5e+021; // Doping concentration of donor impurities, per metre-cube V = 10; // Biasing voltage for semiconductor, V B_prep = 1; // Perpendicular magnetic field to which the semiconductor is subjected, tesla // Part (a) n = N_D; // Electron concentration in semiconductor, per cc R_H = -1/(n*e); // Hall Co-efficient, per C per metre cube // Part (b) rho = 1/(n*e*mu); // Resistivity of semiconductor, ohm-m R = rho*l/(w*t); // Resistance of the semiconductor, ohm I = V/R; // Current through the semiconductor, A V_H = R_H*I*B_prep/t; // Hall voltage, V // Part (c) theta_H = atand(-mu*B_prep); // Hall angle, degrees printf("\nHall coefficient, R_H = %4.2e per C metre cube", R_H); printf("\nHall voltage, V_H = %4.2f V", abs(V_H)); printf("\nHall angle, theta_H = %4.2f degree", theta_H); // Result // Hall coefficient, R_H = -1.39e-003 per C metre cube // Hall voltage, V_H = 0.45 V // Hall angle, theta_H = -7.97 degree