// Scilab Code Ex5.1: Page-176 (2006) clc; clear; h = 6.626e-34; // Planck's constant, Js h_bar = h/(2*%pi); // Reduced Planck's constant, Js e = 1.6e-019; // Energy equivalent of 1 eV, J/eV m = 9.1e-031; // Mass of an electron, kg // For Na n_Na = 2.65e+28; // electronic concentration of Na, per metre cube k_F = (3*%pi^2*n_Na)^(1/3); // Fermi wave vector, per cm E_F = h_bar^2*k_F^2/(2*m*e); // Fermi energy of Na, eV printf("\nThe fermi energy of Na = %4.2f eV", E_F); printf("\nThe band structure value of Na = %4.2f eV", 0.263*13.6); // For K n_K = 1.4e+28; // electronic concentration of K, per metre cube k_F = (3*%pi^2*n_K)^(1/3); // Fermi wave vector, per cm E_F = h_bar^2*k_F^2/(2*m*e); // Fermi energy of K, eV printf("\nThe fermi energy of K = %4.2f eV", E_F); printf("\nThe band structure value of K = %4.2f eV", 0.164*13.6); printf("\nThe agreement between the free electron and band theoretical values are fairly good both for Na and K"); // Result // The fermi energy of Na = 3.25 eV // The band structure value of Na = 3.58 eV // The fermi energy of K = 2.12 eV // The band structure value of K = 2.23 eV // The agreement between the free electron and band theoretical values are fairly good both for Na and K