// Scilab Code Ex4.8: Page-121 (2006) clc; clear; h = 6.626e-034; // Planck's constant, Js h_cross = h/(2*%pi); // Reduced Planck's constant, Js m = 9.1e-031; // Mass of an electron, kg e = 1.6e-019; // Energy equivalent of 1 eV, J/eV V = 1e-06; // Volume of cubical box, metre cube E_F = 7.13*e; // Fermi energy for Mg, J D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2); // Density of states at Fermi energy for Cs, states/eV E_Mg = 1/D_EF; // The energy separation between adjacent energy levels of Mg, J printf("\nThe energy separation between adjacent energy levels of Mg = %5.3e eV", E_Mg/e); E_F = 1.58*e; // Fermi energy for Cs, J D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2); // Density of states at Fermi energy for Mg, states/eV E_Mg = 1/D_EF; // The energy separation between adjacent energy levels of Cs, J printf("\nThe energy separation between adjacent energy levels of Cs = %5.3e eV", E_Mg/e); // Result // The energy separation between adjacent energy levels of Mg = 5.517e-023 eV // The energy separation between adjacent energy levels of Cs = 1.172e-022 eV