// Scilab Code Ex4.9a: Page-141 (2006) clc; clear; E_F = 1; // For simplicity assume Fermi energy to be unity, eV k = 1.38e-023; // Boltzmann constant, J/mol/K e = 1.6e-019; // Energy equivalent of 1 eV, J/eV dE = 0.2; // Exces energy above Fermi level, eV T = 0+273; // Room temperature, K E = E_F + dE; // Energy of the level above Fermi level, eV f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV above E_F printf("\nAt 273 K:"); printf("\n========="); printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %4.2e", dE, f_E); T = 100+273; // Given temperature of 100 degree celsius, K f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV below E_F printf("\n\nAt 373 K:"); printf("\n========="); printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %4.2e", dE, f_E); // Result // At 273 K: // ========= // The occupation probability of electron at 0.2 eV above Fermi energy = 2.05e-004 // At 373 K: // ========= // The occupation probability of electron at 0.2 eV above Fermi energy = 1.99e-003