//Example 4.12 //Givens Method //Page no. 107 clc;close;clear; A=[1,2,2,2;2,1,2,2;2,2,1,3;2,2,3,1]; n=4; for k=1:3 max1=0 if k==1 then i1=2;j1=3; elseif k==2 i1=2;j1=4; else i1=3;j1=4; end fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2 disp(fi,'fi = ') O1=eye(n,n) O1(i1,j1)=-sin(fi) O1(j1,i1)=sin(fi) O1(i1,i1)=cos(fi) O1(j1,j1)=cos(fi) disp(O1,'O1 = ') A=inv(O1)*A*O1 disp(A,'B = ') end printf('\n\n') l=poly(0,'lb') A=A-l*eye(n,n) disp(-det(A),'Characteristic Equation = ') A=roots(det(A)) printf('\n\n The eigenvalues are : \n\n') for i=1:n printf('\tl%i = %g\t',i,A(i)) end