// Scilab Code Ex1.14: Page:33 (2011) clc;clear; c = 1; // Assume speed of light in vacuum to be unity, unit m0 = 1; // For simplicity assume rest mass of the particle to be unity, unit v = c/sqrt(2); // Given speed of the particle, m/s gama = 1/sqrt(1-v^2/c^2); // Relativistic factor m = gama*m0; // The relativistic mass of the particle, unit p = m*v; // The relativistic momentum of the particle, unit E = m*c^2; // The relativistic total eneryg of the particle, unit E_k = (m-m0)*c^2; // The relativistic kinetic energy of the particle, unit printf("\nThe relativistic mass of the particle = %5.3fm0", m); printf("\nThe relativistic momentum of the particle = %1.0gm0c", p); printf("\nThe relativistic total energy of the particle = %5.3fm0c^2", E); printf("\nThe relativistic kinetic energy of the particle = %5.3fm0c^2", E_k); // Result // The relativistic mass of the particle = 1.414m0 // The relativistic momentum of the particle = 1m0c // The relativistic total energy of the particle = 1.414m0c^2 // The relativistic kinetic energy of the particle = 0.414m0c^2