// Examle 15.7 v1=400/1.732; // Phase voltage s=0.02; // Slip p=4; // No.Of poles f=50; // Frequency R2=0.332; // Resistance R2 X2=0.464; // Reactance X2 Ns=(120*f)/p; // Synchronous speed N=Ns*(1-s); // Rotor speed disp(' The rotor speed is = '+string(N)+' rmp'); V1=231+%i*0; // Supply voltage Xg=26.3; // Reactance Xg X1=1.106; // Reactance X1 R1=0.641; // Resistance R1 Vth={V1*(%i*Xg)}/(R1+%i*(X1+Xg)); // Thevenin's voltage Zth={%i*Xg*(R1+%i*X1)}/(R1+%i*(X1+Xg)); // Thevenin's impedance Rl={(1-s)/s}*R2; // Mechanical load I1=Vth/(Zth+R2+%i*X2+Rl); // stator current disp(' Stator current = '+string(I1)+' Amp or ('+string(abs(I1))+' <'+string(atand(imag(I1),real(I1)))+' Amp )'); Q=atand(imag(I1),real(I1)); // Power factor angle pf=cosd(Q); // Power factor disp(' Power factor is = '+string(pf)+' Lagging'); RL=340; // Rotational losses po=(3*12.84^2*Rl)-RL; // O/p power ==> ( taken I1=12.84 ) disp(' O/p power = '+string(abs(po))+' Watt'); pin=3*V1*12.82*0.998; // I/p power ==> ( taken I1=12.82 & pf= 0.998) disp(' I/p power = '+string(abs(pin))+' Watt'); n=po/pin; // Efficiency of motor disp(' Efficiency of motor = '+string(abs(n*100))+' %'); // p 603 15.7