clc //Chapter8 //Example8.6, page no 317 //GivenR=0.01 R=0.01,l=1e3 L=1e-6 G=1e-6 C=0.001e-6 f=1.59e3// operating freq w=2*%pi*f// angular freq //a Zo=sqrt((R+(%i*w*L))*0.35/(G+(%i*w*C)))//characteristic impedance [Z0r,Z0i]=polar(Zo) //b Beta=sqrt(0.5*(sqrt((((R^2)+(round(w^2)*(L^2)))*(round(G^2)+(round(w^2)*(C^2)))))-(round(R*G)-((w^2)*L*C))))//Phase constant v=w/Beta//phase velocity //c Alpha=sqrt(0.5*(sqrt((((R^2)+((w^2)*(L^2)))*((G^2)+((w^2)*(C^2)))))+((R*G)-((w^2)*L*C))))//attenuation constant Vs=1//Assumed for easeof calculation A=(Vs-(Vs*exp(-Alpha*l)))*100 mprintf('The characteristic impedance Zo= %f /_%f \n',Z0r,Z0i*180/%pi) mprintf('The Phase velocity is: v= %3.2e m/sec\n Percent decrease in the voltage is %f%c',v,A,'%') // Note : There are some calculation errors in the solution presented in the book