// Scilab code Ex4.15: Pg 130-131 (2008) clc; clear; N = 500; // Number of turns on first section's coil phi = 2e-03; // Flux produced by first section, Wb l_1 = 85e-02; // Length of first section, m l_2 = 65e-02; // Length of second section, m l_3 = 0.1e-02; // Length of third section, m A_1 = 10e-04; // Csa of first section, m^2 A_2 = 15e-04; // Csa of second section, m^2 A_3 = 12.5e-04; // Csa of second section, m^2 mew_o = 4*(%pi)*1e-07; // Pemeability for free space mew_r1 = 600; // Relative permeability of first section mew_r2 = 950; // Relative permeability of second section mew_r3 = 1; // Relative permeability of third section // Part (a) S_1 = l_1/(mew_r1 * mew_o * A_1); // Reluctance of first section, At/Wb S_2 = l_2/(mew_r2 * mew_o * A_2); // Reluctance of first section, At/Wb S_3 = l_3/(mew_r3 * mew_o * A_3); // Reluctance of first section, At/Wb S = S_1 + S_2 + S_3; // Total reluctance of the circuit, At/Wb printf("\nTotal reluctance of the circuit = %4.2fe+06 At/Wb", S*1e-06); // Part (b) // Since phi = F/S, solving for F F = phi*S; // Magnetomotive force, At // Since F = N*I, solving for I I = F/N; // Electric current in first section, A printf("\nElectric current in first section = %4.2f A", I); // Result // Total reluctance of the circuit = 2.13e+06 At/Wb // Electric current in first section = 8.51 A