//Chapter-2, Example 2.20, Page 2.37 //============================================================================= clc clear //INPUT DATA K=(1/20);//Turn ratio R1=30;//Primary resistance in ohm R2=0.08;//Secondary resistance in ohm X1=80;//Primary reactance in ohm X2=0.3;//Secondary reactance in ohm I=1.5;//No load current in A cosqo=0.5;//Power factor I2=200;//Load current in A V2=500;//Secondary terminal voltage in V cosq2=0.8;//Load power factor q3=60;//Phase angle in degree //CALCULATIONS q2=(acosd(cosq2));//Phase angle in degree I2i=complex((I2*cosd(q2)),(I2*sind(-q2)));//Load current in complex form V2i=complex(V2,0);//Secondary terminal voltage in complex form Z2=complex(R2,X2);//Impedence in complex form E2=(V2i+(I2i*Z2));//Terminal voltage in V E1=(sqrt((real(E2))^2+(imag(E2))^2)/K);//Primary voltage in V I2c=(K*I2);//Secondary current in A I21c=complex((I2c*cosd(q2)),(I2c*sind(-q2)));//Load current in complex form Io=complex((I*cosd(-q3)),(I*sind(-q3)));//No load current in A I1c=(Io+I21c);//Total current Z1=complex(R1,X1);//Primary impedence V1=(E1+(I1c*Z1));//Primary applied voltage V1i=(sqrt((real(V1))^2+(imag(V1))^2));//Primary applied voltage in V A=((atand(imag(V1)/real(V1)))-((atand(imag(I1c)/real(I1c)))));//Angle between V1 and I1 in degree p=cosd(A);//Power factor Cu=(I2^2*(R2+(K^2*R1)));//Copper losses in W C=(V1i*sqrt((real(Io))^2+(imag(Io))^2)*cosqo);//Constant losses in W P=(V2*I2*cosq2);//Output power in W n=(P/(P+Cu+C))*100;//Efficiency //OUTPUT mprintf('Primary applied voltage is %3.2f V\nPrimary power factor is %3.2f \nEfficiency is %3.2f percent',V1i,p,n); //=================================END OF PROGRAM==============================