//example-11.1 //page no- 343 //given //applied stress sigmax=3.5 //MPa //aluminium crystal slips from (111) plane in the direction [110] when the stess is applied to (1-11) //so h1=1 k1=1 l1=1 h2=1 k2=-1 l2=1 //magnitude of plane (111) M1=sqrt(h1^2+k1^2+l1^2) //magnitude of (1-11) M2=sqrt(h2^2+k2^2+l2^2) //direction [110] h3=1 k3=1 l3=0 //magnitude of direction[110] M3=sqrt(h3^2+k3^2+l3^2) //the angle between the planes (111) and (1-11) is cosphie=[{h1*h2+k1*k2+l1*l2}/(M1*M2)] sinphie=sqrt(1-(cosphie)^2) //similarly angle between the plane (111) and the direction [110] is given by costheta=[(h1*h3+k1*k3+l1*l3)/(M1*M3)] //critical resolved shear stress taucr=sigmax*2*sinphie*cosphie*costheta/2 //MPa printf ("the critical resolved shear stress is %f MPa",taucr)