//AC Circuits : example 4.80 :(pg 4.65) R=10; L=0.2; C=40*10^-6; V=100; f0=(1/(2*%pi*sqrt(L*C))); I0=(V/R); P0=((I0^2)*R); pf=1; Vr=(R*I0); Vl=((2*%pi*f0*L)*I0); Vc=((1/(2*%pi*f0*C))*I0); Q=((1/R)*sqrt(L/C)); f1=(f0-(R/(4*%pi*L))); f2=(f0+(R/(4*%pi*L))); printf("\nR=10 Ohm \nL=0.2 H \nC=40uF \nV=100 V"); printf("\n(i) f0= 1/2*pi*sqrt(LC) =%.1f Hz",f0); //resonant frequency printf("\n(ii) I0= V/R =%.f A",I0); //current printf("\n(iii) P0=(I0^2)*R =%.f W",P0);//power printf("\n(iv) pf=1");//power factor printf("\n(v) Rv = R.I =%.f V",Vr);//voltage across resistor printf("\n Lv = XL.I =%.1f V",Vl);//voltage across inductor printf("\n Cv = XC.I =%.1f V",Vc); //voltage across capacitor printf("\n(vi) Q =1/R*sqrt(L/C)=%.2f",Q);//Quality factor printf("\n(vii)f1 = f0-R/4.pi.L = %.2f Hz",f1); //half power points printf("\nf2=f0+R/4.pi.L = %.1f Hz",f2); // x initialisation x=[-1:0.1:2*%pi]; //simple plot plot(sin(x))