//chapter 12 //example 12.3 //page 371 clear all; clc ; //given Vcc=20;//supply voltage Rl=500;//load resistance Av=75;//closed loop voltage gain f1=30;// i/p signal frquency Hz hfe=80; hie=1.4; Ve=5;Vce=3; VR2=5.7; Vbe=5; VR3=Vcc-Vce-Ve; R3=Rl/10; Ic=VR3/R3*10^3; printf("\ncollector current = %d microA,\ntoo small for operations of transistor,\nSo Ic=1 mA",Ic) Ic=1; R3=VR3/Ic; printf('\nR3=%d kohm which is standard value',R3) R45=(Ve/Ic); R4=1000*((R3*Rl)/(R3+Rl))/Av; printf("\nR4=%d ohm ,use standard value 150 ohm",R4);R4=150; R5=R45-R4/1000; printf("\nR5=%.2f kohm ,use standard value 5.6 kohm",R5); R5=5.6;//kohm //potential divider current and resistors I2=Ic/10; Ve=0.7; R2=(Vbe+Ve)/I2; printf("\nR2=%d kohm,use standard value 56 kohm",R2);R2=56; R1=(Vcc-VR2)/I2; printf("\nR1=%d kohm,use standard value 150 kohm",R1);R1=150; Zb=hie+(1+hfe)*R4/1000; //input impedance Zi=1/((1/Zb)+(1/R1)+(1/R2)); printf("\ninput impedance=%.2f kohm",(Zi)); //capacitance XC1=Zi/10; XC1=1; C1=10^3/(2*%pi *f1*XC1); printf("\ncapacitor C1=%.1f microF,use standard value 5.6 microF",(C1)) XC2=R4; C2=10^6/(2 * %pi *f1* XC2); printf("\ncapacitor C2=%.1f microF,use standard value 39 microF",C2) C3=10^3/(2*%pi *f1*Rl/10); printf("\ncapacitor C3=%.3f microF,use standard value 0.1 microF",C3)