//CHAPTER 8- DIRECT CURRENT MACHINES //Example 5 disp("CHAPTER 8"); disp("EXAMPLE 5"); //VARIABLE INITIALIZATION v_t=200; //in Volts I_l=50; //in Amperes r_a=0.1; //armature resistance in Ohms r_f=100; //field resistance in Ohms s_loss=500; //core and iron loss in Watts //SOLUTION //solution (a) I_f=v_t/r_f; //I_sh is same as I_f and r_sh is same as r_f I_a=I_f+I_l; E_a=v_t+(I_a*r_a); disp(sprintf("(a) The induced emf is %f V",E_a)); //solution (b) arm_loss=(I_a^2)*r_a; //armature copper loss sh_loss=(I_f^2)*r_f; //shunt field copper loss tot_loss=arm_loss+sh_loss+s_loss; p_o=v_t*I_l; //output power p_i=p_o+tot_loss; //input power bhp=p_i/735.5; //1 metric horsepower= 735.498W disp(sprintf("(b) The Break Horse Power(B.H.P.) of the prime mover is %f H.P.(metric)",bhp)); //solution (c) c_eff=(p_o/p_i)*100; p_EE=E_a*I_a; //electrical power m_eff=(p_EE/p_i)*100; e_eff=(p_o/p_EE)*100; disp(sprintf("(c) The commercial efficiency is %f %%, the mechanical efficiency is %f %% and the electrical efficiency is %f %%",c_eff,m_eff,e_eff)); //END