//CHAPTER 8- DIRECT CURRENT MACHINES //Example 32 clc; disp("CHAPTER 8"); disp("EXAMPLE 32"); //VARIABLE INITIALIZATION v_t=250; //in Volts I=20; //in Amperes N1=1000; //in rpm P=4; //number of poles r_p=0.05; //resistance of field coil on each pole in Ohms r_a=0.2; //in Ohms //SOLUTION r_se=P*r_p; r_m=r_a+r_se; //resistance of motor E_b1=v_t-(I*r_m); T1=I^2; //solution (a) //solving the quadratic equation directly, r=10; //in Ohms a=1.02; b=-25; c=-400; D=b^2-(4*a*c); x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a); //to extract the positive root out of the two if (x1>0 & x2<0) I1=x1; else (x1<0 & x2>0) I1=x2; end; I_a=((10.2*I1)-v_t)/r; E_b2=v_t-(I_a*r_a); N2=((E_b2/E_b1)*I*N1)/I1; N2=round(N2); //to round off the value disp(sprintf("(a) The speed with 10 Ω resistance in parallel with the armature is %d rpm",N2)); //solution (b) //solving the quadratic equation directly, a=5/7; b=0; c=-400; D=b^2-(4*a*c); y1=(-b+sqrt(D))/(2*a); y2=(-b-sqrt(D))/(2*a); //to extract the positive root out of the two if (y1>0 & y2<0) I2=y1; else (y1<0 & y2>0) I2=y2; end; E_b3=v_t-(I2*r_a); N3=((E_b3/E_b1)*I*N1)/(I2*a); N3=round(N3); //to round off the value disp(sprintf("(b) The speed with 0.5 Ω resistance in parallel with series field is %d rpm",N3)); //The answers are slightly different due to the precision of floating point numbers //END