//CHAPTER 8- DIRECT CURRENT MACHINES //Example 25 disp("CHAPTER 8"); disp("EXAMPLE 25"); //VARIABLE INITIALIZATION slot=24; //number of slots P=2; //number of poles N=18; //number of turns per coil B=1; //in Webers l=20/100; //effective length in meters rad=10/100; //radius in meters w=183.2; //angular velocity in rad/s //SOLUTION A=2; Z=slot*P*N; //total number of conductors ar1=(2*%pi*rad*l)/P; ar2=ar1*0.8; //since the magnetic poles 80% of the armature periphery phi=B*ar2; //effective flux per pole //solution (a) E_a=(P*Z*phi*w)/(2*%pi*A); disp(sprintf("(a) The induced emf is %f V",E_a)); //solution (b) coil=slot/P; //number of coils in each path E_coil=E_a/coil; disp(sprintf("(b) The induced emf per coil is %f V",E_coil)); //solution (c) E_turn=E_coil/N; disp(sprintf("(c) The induced emf per turn is %f V",E_turn)); //solution (d) E_cond=E_turn/A; disp(sprintf("(d) The induced emf per conductor is %f V",E_cond)); //The answers are slightly different due to the precision of floating point numbers //END