//CHAPTER 8- DIRECT CURRENT MACHINES //Example 20 disp("CHAPTER 8"); disp("EXAMPLE 20"); //250 V DC shunt motor //VARIABLE INITIALIZATION v_t=250; //in Volts I_a1=20; //in Amperes N1=1000; //in rpm r_a=0.5; //in Ohms drop=1; //brush contact drop in Volts ratio=1.5; //N2:N1=1.5 phi1=1; //it is an assumption //SOLUTION // equations have been renumbered differently than in the text book for better clarity // Torque is constant // T dir prop phi.Ia // phi1.ia1=phi2.Ia2 (eq 1) //similarly, E dir prop phi.N //E1/E2 = phi1.n1/phi2.n2 E_1=v_t-(I_a1*r_a)-(2*drop); //speed raised by 50%. new speed 1.5 times the old one i.e n2=1.5N1 // //E1/E2 = Phi1.N1/phi2.N2 (eq 2) //from eq 2 //=>E1/E2=Phi1/1.5.phi2 (substituting N2=1.5N1) (eq 3) //=>phi2/phi1=E2/1.5.E1 (eq 4) //from eq 1 //phi2/ph1=Ia2/Ia2=20/Ia2 -------------------(eq 5) //substituting value of phi2/phi1 in eq 4 we get //20/Ia2=E2/1.5E1 //=>E1/E2=Ia2/30 (eq 6) //further we know that //E2=V-Ia2.Ra -2.drop where V=v_t=250, ra=R_a=0.5 and drop=1 //=>E2=(V-2.drop) -Ra.Ia2 (eq 7) //substituting value of E2 in eq 6, we get //E1/[(V-2.drop)-ra.Ia2] = Ia2/30 (eq 8) // we get quadratic equation //Setting in an quadratic equation of type a.X^2 + b.X + c = 0 //The constants are as given below: a=1; // coefficient of Ia2^2 b=-496; //coefficient of Ia2, = (V-2.drop).Ra=(v_t-2.drop).R_a c=14280; // constant = E_1*30 D=b^2-(4*a*c); x1=(-b+sqrt(D))/(2*a); x2=(-b-sqrt(D))/(2*a); if(x1<40) I_a2=x1; else if(x2<40) I_a2=x2; end; phi2=(I_a1/I_a2)*phi1; phi=(1-phi2)*100; disp(sprintf("The flux to be reduced is %.1f %% of the main flux",phi)); //END