//CHAPTER 7- SINGLE PHASE TRANSFORMER //Example 8 disp("CHAPTER 7"); disp("EXAMPLE 8"); //23 kVA 2300/230 V 60 Hz step down transformer //VARIABLE INITIALIZATION va=23000; //apparent power v1=2300; //primary voltage in Volts v2=230; //secondary voltage in Volts r1=4; //primary resistance in Ohms r2=0.04; //secondary resistance in Ohms X1=12; //leakage reactance primary in Ohms X2=0.12; //leake reactance in secondary in Ohms pf=0.866; //power factor(leading) //SOLUTION //assume voltage across load be 230 V //V'1=I2.(Re2+jXe2)+V2 //Re2=R'1+R2 //R'1=R1.(N2/N1)^2 //Xe2=X'1+X2 //X'1=X1.(N2/N1)^2 //Ze2=Re2+j.Xe2 r1_dash=r1*((v2/v1)^2); r_e2=r1_dash+r2; X1_dash=X1*((v2/v1)^2); X_e2=X1_dash+X2; // //disp(sprintf("The value of Re2 %f and Xe2 %f",r_e2,X_e2)); I2=0.75*(va/v2); //since transformer operates at 75% of its rated load // function [x,y]=pol2rect(mag,angle); x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians y=mag*sin(angle*(%pi/180)); endfunction; [x,y]=pol2rect(I2,-30); I_dash_2=x+y*%i; //disp(sprintf("The value %f %f",real(I_dash_2),imag(I_dash_2))); // Z_e2=r_e2+X_e2*%i; //in rect coordinates //disp(sprintf("The value %f %f",real(Z_e2),imag(Z_e2))); // V_dash_1=v2+I_dash_2*Z_e2; //disp(sprintf("The value %f %f",real(V_dash_1),imag(V_dash_1))); // function [mag,angle]=rect2pol(x,y); mag=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees endfunction; // [magV1,angleV1]=rect2pol(real(V_dash_1),imag(V_dash_1)); //disp(sprintf("The value %f <%f",magV1,angleV1)); // //Pin=V'1.I2.cos theta1 //Pout=V2.I2.cos theta2 Pin=magV1*I2*cos((30+angleV1)*%pi/180); Pout=v2*I2*cos(30*%pi/180); eff=Pout*100/Pin; // disp(sprintf("The efficiency of the transformer is %.2f",eff)); disp(" "); // //END