//CHAPTER 6- MAGNETIC CIRCUITS //Example 2 clc; disp("CHAPTER 6"); disp("EXAMPLE 2"); //VARIABLE INITIALIZATION dr=25/100; //diameter of steel ring in m ds=3/100; //diameter of circular section in m lg=1.5/1000; //length of air-gap in m N=700; //number of turns mu0=4*%pi*10^(-7); //absolute permeability in Henry/m I=2; //in Amperes //SOLUTION //solution (i) mmf=N*I; disp(sprintf("(i) MMF is %d AT", mmf)); //solution (ii) netMMF=(mmf-(0.35*mmf)); //mmf taken by iron path is 35% of total mmf b=(mu0*netMMF)/lg; //phi=b*area, r=lg/(mu0*area) & mmf=phi*r => mmf=(b*lg)/mu0 => b=(mmf*mu0)/lg disp(sprintf("(ii) The flux density of the air gap is %E Wb/m^2", b)); //solution (iii) ar=%pi*((ds/2)^2); //area of cross-section of circular section phi=ar*b; disp(sprintf("(iii) The magnetic flux is %E Wb",phi)); //solution (iv) rt=mmf/phi; disp(sprintf("(iv) The total reluctance is %E AT/wb",rt)); //solution (v) rg=lg/(mu0*ar); //reluctance of air gap rs=rt-rg; //reluctance of steel lr=%pi*dr; //circumference of ring mur=lr/(mu0*rs*ar); disp(sprintf("(v) The relative permeability of the steel ring is %E",mur)); //solution (vi) disp(sprintf("(vi) Reluctance of steel is %E AT/Wb",rs)); //END