//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 52 clc; disp("CHAPTER 2"); disp("EXAMPLE 52"); //VARIABLE INITIALIZATION r1=7; //in Ohms L1=0.015; //in Henry r2=12; //in Ohms c2=180*(10^(-6)); //in Farad r3=5; //in Ohms L3=0.01; //in Henry v=230; //in Volts f=50; //in Hertz //SOLUTION //solition (a) xl1=2*%pi*f*L1; xc2=1/(2*%pi*f*c2); xl3=2*%pi*f*L3; Z1=r1+xl1*%i; //complex representations Z2=r2-xc2*%i; Z3=r3+xl3*%i; //function to convert from rectangular form to polar form function [z,angle]=rect2pol(r,x); z=sqrt((r^2)+(x^2)); angle=atan(x/r)*(180/%pi); //to convert the angle from radians to degrees endfunction; [z1,angle1]=rect2pol(r1,xl1); [z2,angle2]=rect2pol(r2,xc2); [z3,angle3]=rect2pol(r3,xl3); //to obtain rectangular form of (Z1+Z2) req1=r1+r2; xeq1=xl1-xc2; //to obtain polar form of (Z1+Z2) [zeq1,angle_eq1]=rect2pol(req1,-xeq1); zp=(z1*z2)/(zeq1); angle_p=(angle1-angle2)+angle_eq1; //function to convert from polar form to rectangular form function [r,x]=pol2rect(z,angle); r=z*cos(angle*(%pi/180)); //to convert the angle from degrees to radians x=z*sin(angle*(%pi/180)); endfunction; [rp,xp]=pol2rect(zp,angle_p); [req,xeq]=pol2rect(z3,angle3); r_tot=req+rp; x_tot=xeq+xp; [z_tot,angle_tot]=rect2pol(r_tot,x_tot); Z=r_tot+x_tot*%i; //complex representation disp(sprintf("(a) The total impedance is %f Ω, %f degrees",z_tot,angle_tot)); //solution (b) I=v/Z; //complex division angle_I=-angle_tot; [I_x,I_y]=pol2rect(I,angle_I); disp(sprintf("(b) The total currrent is (%f-j%f) A",real(I),imag(I))); //solution (c) //Voltage drop across Z3 Vab=I*Z3; disp(sprintf(" The Voltage between AB is (%f-j%f) A",real(Vab),imag(Vab))); //since we know that V=Vab+Vbc Vbc=v-Vab; disp(sprintf(" The Voltage between BC is (%f-j%f) A",real(Vbc),imag(Vbc))); I1=Vbc/Z1; //Branch 1 current I2=Vbc/Z2; //branch 2 current //I3=I, main branch current [mag1,angle1]=rect2pol(real(I1),imag(I1)); [mag2,angle2]=rect2pol(real(I2),imag(I2)); disp(sprintf("(c) Current in branch 1 is %f A, %f degrees",mag1,angle1)); disp(sprintf(" The currrent in branch 1 is (%f-j%f) A",real(I1),imag(I1))); disp(sprintf(" The current in branch 2 is %f A, %f degrees",mag2,angle2)); disp(sprintf(" The currrent in branch 2 is (%f-j%f) A",real(I2),imag(I2))); //END