//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 42 // read it as example 41 in the book on page 2.100 disp("CHAPTER 2"); disp("EXAMPLE 42"); //VARIABLE INITIALIZATION I=10; // max amplitude of wave in Amp rms1=5; //rms values of current rms2=7.5; rms3=10; phi1=30; //phase angles phi2=-60; phi3=45; f=50; //frequency in Hz w=2*%pi*f; // //SOLUTION //in case of sinosoidal wave, average value of alternating quantity = RMS values/1.11 av1=rms1/1.11; //average values of 1,2,3 currents av2=rms2/1.11; av3=rms3/1.11; disp("SOLUTION (i)"); disp(sprintf("The average value of 1st current is %.2f Amp", av1)); disp(sprintf("The average value of 2nd current is %.2f Amp", av2)); disp(sprintf("The average value of 3rd current is %.2f Amp", av3)); // //instantaneous values of current //i(t)=RMS.sqrt(2).sin (w.t+phi) //w=2.pi.f which for 50 Hz coes to 314 disp("SOLUTION (ii)"); disp(sprintf("The instantaneous value of 1st current is %.2f sin(%.0f*t+%.0f) Amp", rms1*sqrt(2), w,phi1)); disp(sprintf("The instantaneous value of 2nd current is %.2f sin(%.0f*t%.0f) Amp", rms2*sqrt(2), w,phi2)); disp(sprintf("The instantaneous value of 3rd current is %.2f sin(%.0f*t+%.0f) Amp", rms3*sqrt(2), w,phi3)); // //instantaneous values of current at t=100msec=0.1 sec t=0.1; i1=(rms1*sqrt(2))*(sin(w*t+phi1*%pi/180)); i2=(rms2*sqrt(2))*(sin(w*t+phi2*%pi/180)); i3=(rms3*sqrt(2))*(sin(w*t+phi3*%pi/180)); disp("SOLUTION (iv)"); disp(sprintf("The instantaneous value of 1st current is %.3f Amp at %.3f Sec", i1, t)); disp(sprintf("The instantaneous value of 2nd current is %.3f Amp at %.3f Sec", i2, t)); disp(sprintf("The instantaneous value of 3rd current is %.3f Amp at %.3f Sec", i3, t)); disp(" "); // //END