//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 19 disp("CHAPTER 2"); disp("EXAMPLE 19"); //VARIABLE INITIALIZATION z1=4+(%i*3); //impedance in rectangular form in Ohms z2=6-(%i*8); //impedance in rectangular form in Ohms z3=1.6+(%i*7.2); //impedance in rectangular form in Ohms v=100 //in volts //SOLUTION //solution (i) //Admittance of each parallel branch Y1 and Y2 Y1=1/z1; Y2=1/z2; disp("SOLUTION (i)"); disp(sprintf("Admittance parallel branch 1 is %3.3f %3.3fj S", real(Y1), imag(Y1))); disp(sprintf("Admittance parallel branch 2 is %3.3f+%3.3fj S", real(Y2), imag(Y2))); disp(" "); //solution (ii) //Total circuit impedance Z=(Z1||Z2)+Z3 z=z3+(z2*z1)/(z1+z2) disp("SOLUTION (ii)"); disp(sprintf("Total circuit impedance is %3.3f %3.3fj S", real(z), imag(z))); //solution in the book is wrong as there is a total mistake in imaginery part 7.2+0.798=11.598 // //solution (iii) //Supply current I=V/Z i=v/z; function [z,angle]=rect2pol(x,y); z0=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees endfunction; [z, angle]=rect2pol(real(i), imag(i)); //disp(sprintf("%f, %f",z,angle)); //disp(sprintf("%f, %f",real(i), imag(i))); pf=cos(angle*%pi/180); disp("SOLUTION (iii)"); disp(sprintf("The power factor is %4.2f",pf)); //solution (iv) //Power supplied by source = VI cosĪ¦ or I^2 . R P=v*real(i)*pf; disp("SOLUTION (iv)"); disp(sprintf("The power supplied by source is %d watt",P)); //END