//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 17 disp("CHAPTER 2"); disp("EXAMPLE 17"); //VARIABLE INITIALIZATION e=141.4; //in Volts E=141.4/sqrt(2); //in Volts angle_E=0; //in degrees //i(t)=(14.14<0)+(7.07<120) i1=14.14; //in Amperes angle_i1=0; //in degrees i2=7.07; //in Amperes angle_i2=120; //in degrees //SOLUTION //function to convert from polar form to rectangular form function [x,y]=pol2rect(mag,angle); x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians y=mag*sin(angle*(%pi/180)); endfunction; [i1_x,i1_y]=pol2rect(i1,angle_i1); [i2_x,i2_y]=pol2rect(i2,angle_i2); i=(i1_x+i2_x)+(%i*(i1_y+i2_y)); //function to convert from rectangular form to polar form function [mag,angle]=rect2pol(x,y); mag=sqrt((x^2)+(y^2)); angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees endfunction; [I,angle_I]=rect2pol((i1_x+i2_x),(i1_y+i2_y)); I=I/sqrt(2); //solution (i) z=E/I; angle_z=angle_E-angle_I; [r,xc]=pol2rect(z,angle_z); f=50; c=1/(2*%pi*f*(-xc)); disp(sprintf("(i) The value of resistance is %f Ω",r)); disp(sprintf(" The value of capacitance is %f μF",c*10^6)); //solution (ii) pf=cos(angle_z*(%pi/180)); disp(sprintf("(ii) The power factor is %f ",pf)); //solution (iii) p=E*I*pf; disp(sprintf("(iii) The power absorbed by the source is %f W",p)); //END