//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 13 clc; disp("CHAPTER 2"); disp("EXAMPLE 13"); //VARIABLE INITIALIZATION z=1+(%i*1); //load impedance in rectangular form in Ohms v=20*sqrt(2); //amplitude of rms value of voltage in Volts //SOLUTION function [zp,angle]=rect2pol(x,y); //function 'rect2pol()' converts impedance in rectangular form to polar form zp=sqrt((x^2)+(y^2)); //z= (x) + j(y)= (1)+ j(1); 'zp' is in polar form angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees endfunction; //solution (i) [zp,angle]=rect2pol(1,1); //since x=1 and y=1 v=v/sqrt(2); angle_v=100; //v=(20/sqrt(2))*sin(ωt+100) I=v/zp; //RMS value of current angle_I=angle_v-angle; Im=I*sqrt(2); disp(sprintf("(i) The current in load is i = %d sin(ωt+%d) A",Im,angle_I)); //solution (ii) p=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180)); disp(sprintf("(ii) The real power is %f W",p)); //solution (iii) pa=(v/sqrt(2))*(I*sqrt(2)); disp(sprintf("(ii) The apparent power is %f VAR",pa)); //END