//CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 3 disp("CHAPTER 10"); disp("EXAMPLE 3"); //VARIABLE INITIALIZATION N_r=1140; //full load speed in rpm f=60; //in Hz //SOLUTION //solution (i) P=(120*f)/N_r; P=round(P); disp(sprintf("(i) The number of poles is %d",P)); //solution (ii) N_s=(120*f)/P; s=(N_s-N_r)/N_s; disp(sprintf("(ii) The slip at full load is %d %%",s*100)); //solution (iii) f_r=s*f; disp(sprintf("(iii) The frequency of the rotor voltge is %d Hz",f_r)); //solution (iv) N1=(120*f_r)/P; //speed of rotor field w.r.t stator N1=round(N1); disp(sprintf("(iv) The speed of rotor field w.r.t rotor is %d rpm",N1)); //solution (v) N2=N_r+N1; //speed of stator field w.r.t stator field N3=N_s-N2; //speed of rotor field w.r.t stator field disp(sprintf("(v) The speed of rotor field w.r.t stator field is %d rpm",N3)); disp("Hence, the rotor field is stationary w.r.t stator field"); //solution (vi) ratio=10/100; //10% slip N_r=N_s*(1-ratio); N_r=round(N_r); disp(sprintf("(vi) The speed of rotor at 10%% slip is %d rpm",N_r)); s1=(N_s-N_r)/N_s; fr=s1*f; disp(sprintf(" The rotor frequency at this speed is %f Hz",fr)); //solution (vii) v=230; ratio1=1/0.5; E_rotor=v*(1/ratio1); E_rotor_dash=ratio*E_rotor; disp(sprintf("(vii) The rotor induced emf is %f V",E_rotor_dash)); //END