//CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 14 disp("CHAPTER 10"); disp("EXAMPLE 14"); //VARIABLE INITIALIZATION p=10*1000; //in Watts I_nl=8; //no load line current in Amperes p_ni=660; //input power at no load in Watts I_fl=18; //full load current in Amperes p_fi=11.20*1000; //input power at full load in Watts r=1.2; //stator resistance per phase in Ohms loss=420; //friction and winding loss in Watts //SOLUTION //solution (a) I1=I_nl/sqrt(3); i_sq_r1=(I1^2)*r*3; //stator (I^2*R) loss at no load s_loss=p_ni-loss-i_sq_r1; disp(sprintf("(a) The stator core loss is %f W",s_loss)); //solution (b) I2=I_fl/sqrt(3); i_sq_r2=(I2^2)*r*3; p_g=p_fi-s_loss-i_sq_r2; r_loss=p_g-p; disp(sprintf("(b) The total rotor loss at full load is %f W",r_loss)); //solution (c) o_loss=r_loss-loss; disp(sprintf("(c) The total rotor ohmic loss at full load is %f W",o_loss)); //solution (d) s_fl=o_loss/p_g; //full load slip N_s=1500; N_r=N_s*(1-s_fl); disp(sprintf("(d) The full load speed is %f rpm",N_r)); //solution (e) w=(2*%pi*N_s)/60; T_e=p_g/w; disp(sprintf("(e) The internal torque is %f N-m",T_e)); T_sh=p/(w*(1-s_fl)); disp(sprintf(" The shaft torque is %f N-m",T_sh)); eff=p/p_fi; disp(sprintf(" The motor efficiency is %f %%",eff*100)); //The answers may be slightly different due to precision of floating point numbers //END