//CHAPTER 10- THREE-PHASE INDUCTION MACHINES //Example 13 disp("CHAPTER 10"); disp("EXAMPLE 13"); //VARIABLE INITIALIZATION f=50; //frequency in Hertz N_r=1440; //full-load rotor speed in rpm //SOLUTION //solution (a) function N=speed(pole); //function 'speed()' calculates the synchronous speed in rpm N=(120*f)/pole; endfunction; pole=2; N=speed(pole); if(N>N_r & N<2000) P=pole; N_s1=N; disp(sprintf("(a) The number of poles is %d",P)); end; pole=4; N=speed(pole); if(N>N_r & N<2000) P=pole; N_s1=N; disp(sprintf("(a) The number of poles is %d",P)); end; pole=6; N=speed(pole); if(N>N_r & N<2000) P=pole; N_s1=N; disp(sprintf("(a) The number of poles is %d",P)); end; //solution (b) s=(N_s1-N_r)/N_s1; f_r=s*f; disp(sprintf("(b) The slip is %.2f %% and rotor frequency is %d Hz",s*100,f_r)); //solution (c) w1=(2*%pi*N_s1)/60; disp(sprintf("(c(i)) The speed of stator field w.r.t. stator structure is %.3f rad/s",w1)); //Answer given in the book is wrong N_s2=N_s1-N_r; w2=(2*%pi*N_s2)/60; disp(sprintf("(c(ii)) The speed of stator field w.r.t. rotor structure is %.3f rad/s",w2)); //solution (d) factor=(2*%pi)/60; //converting rpm to radian/second N_r1=(120*f_r)/P; disp(sprintf("(d(i)) The speed of rotor field w.r.t. rotor structure is %.3f rad/s",N_r1*factor)); N_r2=N_r+N_r1; disp(sprintf("(d(ii)) The speed of rotor field w.r.t. stator structure is %.3f rad/s",N_r2*factor)); N_r3=N_s1-N_r2; disp(sprintf("(d(iii)) The speed of rotor field w.r.t. stator structure is %d rad/s",N_r3)); //END