// Example 4.3 // Matrix Node Analysis with Three Unknown // From Figure 4.7 G_11= 1/4+1/2+1/10; // Sum of Conductance at node 1 G_12=1/10// Equivalent Conductance connecting node 1 & 2 G_13= 0; // Equivalant Conductance connecting node 1 & 3 G_21=G_12; // Symmetry Property of Conductance Matrix G_22= 1/10+1/5; // Sum of conductance at node 2 G_23=1/5; // Equivalent Conductance connecting node 2 & 3 G_31=G_13; // Symmetry Property of Conductance Matrix G_32=G_23; // Symmetry Property of Conductance Matrix G_33=1/5+1/20; // Sum of Conductance at node 3 G=[G_11,-G_12,-G_13;-G_21,G_22,-G_23;-G_31,-G_32,G_33]; // Conductance Matrix i_s11= 30/2+3; // Net Equivalent source current into node 1 i_s21= -1; // Net Equivalent source current into node 2 i_s31=-3; // Net Equivalent source current into node 3 i_s=[i_s11;i_s21;i_s31]; // Current Vector v=G\i_s; v_1=v(1,1); v_2=v(2,1); v_3=v(3,1); disp(v_1," Voltage at node 1(in Volts)=") disp(v_2,"Voltage at node 2(in Volts)=") disp(v_3," Voltage at node 3(in Volts)=")