// Example 11.1 // A Frequency-Selective Network // v_in(t)=10*cos(20*t)+10*cos(300*t) R=8; L=0.2; s=%s; H_s= R/(s*L+R); // H(s)=V_out/V_in , applying KVL in figure 11.1 // Selecting input frequency to omega1= 20; H_omega1= horner(H_s,%i*omega1); a_omega1=abs(H_omega1);// amplitude ratio theta1_r=atan(imag(H_omega1),real(H_omega1)); // Phase shift in radian theta1_d=atan(imag(H_omega1),real(H_omega1))*(180/%pi); // Phase shift in degree // Selecting input frequency to omega2=300; H_omega2= horner(H_s,%i*omega2); a_omega2=abs(H_omega2);// amplitude ratio theta2_d=atan(imag(H_omega2),real(H_omega2))*(180/%pi);// Phase shift in degree theta2_r=atan(imag(H_omega2),real(H_omega2));// Phase shift in radians t=0:0.001:5 v_out=a_omega1*10*cos(omega1*t+theta1_r)+a_omega2*10*cos(omega2*t+theta2_r) plot(t,v_out); xlabel('t'); ylabel('v_out(t)') title('Steady State Output Voltage Waveform')