//Chapter 5 //Example 5.4 //Page 111 //compensation clear;clc; //Given l = 230 ; //in mi f = 60 ; //in Hz P = 125e6 ; //in W V = 215e3 ; //in V //From Table A.1 and A.2 for 30ft Rook //z = R + i(Xa + Xd) z = 0.1603 + %i * (0.415+0.4127); //From Table A.1 and A.3 for 30ft Rook y = %i * [1e-6 / ( 0.0950 + 0.1008)] //Calculations yl = sqrt(y*z)*l; Z_c = sqrt(z/y); cosh_yl = cosh(real(yl)) * cos(imag(yl)) + %i * sinh(real(yl)) * sin(imag(yl)); sinh_yl = sinh(real(yl)) * cos(imag(yl)) + %i * cosh(real(yl)) * sin(imag(yl)); //Equivalent pi circuit Z1 = Z_c * sinh_yl; Y1_2 = (cosh_yl - 1)/(Z_c * sinh_yl); A = cosh_yl;D = cosh_yl; B = Z1; C = sinh_yl / Z_c; disp('For an uncompensated line') printf("\n\n A = D = %.4f /_%.2f \n\n",abs(A),(atan(imag(A),real(A))*180/%pi)) printf("\n\n B = %.4f /_%.2f ohm \n\n",abs(B),(atan(imag(B),real(B))*180/%pi)) printf("\n\n C = %f /_%.2f mho \n\n",abs(C),(atan(imag(C),real(C))*180/%pi)) //For a series compensation factor of 70% cf = 0.7 B1 = Z1 - %i * cf * l * (0.415 + 0.4127) ;//X_a = 0.415 ohm/mi,X_d = 0.4127 in A1 = B1 * Y1_2 + 1; C1 = 2 * Y1_2 + B1 * (Y1_2)^2; disp('For a series compensation factor of 70%') printf("\n\n B = %.2f /_%.2f ohm \n\n",abs(B1),(atan(imag(B1),real(B1))*180/%pi)) printf("\n\n A = %.3f /_%.2f \n\n",abs(A1),(atan(imag(A1),real(A1))*180/%pi)) printf("\n\n C = %f /_%.2f mho \n\n",abs(C1),(atan(imag(C1),real(C1))*180/%pi))