//exapple 2.2 clc; funcprot(0); // Initialization of Variable M=28.8/1000; mu=1.73/10^5; gamm=1.402; P1=107.6*10^3; l = 68.5; pi = %pi; V=22.414/1000; R=8.314; temp=285; d=4/1000; rr=0.0008; phi=0.00285; //calculation //constant term of equation //part1 a=1-8*phi*l/d;//constant term in deff deff('y=f(x)','y=log(x^2)-x^2+2.938'); [x,v,info]=fsolve(1,f); z=1/x; z=round(z*1000)/1000; disp(z,"ratio of Pw/P1"); //part2 Pw=z*P1; nuw=V*P1*temp/Pw/M/273; Uw=sqrt(nuw*Pw); disp(Uw,"maximum velocity in (m/s):") //part3 Gw=pi*d^2/4*Pw/Uw; disp(Gw,"maximum mass flow rate in(kg/s):"); //part4 G=2.173/1000; J=G*Uw^2/2; disp(J,"heat taken up to maintain isothermal codition(J/s):"); //part5 nu2=2.79;//found from graph nu1=R*temp/M/P1; P2=P1*(nu1/nu2)^gamm; disp(P2/P1,"crtical pressure ratio in adiabatic condition:"); //part6 Uw=sqrt(gamm*P2*nu2); disp(Uw,"velocity at adiabatic condition in (m/s):"); //part7 Gw=pi*d^2/4*Uw/nu2; disp(Gw,"mass flow rate at adiabatic condition in (kg/s):"); //part8 //polynomial in T of the form ax^2+bx+c=0; c=gamm/(gamm-1)*P1*nu1+.5*Gw^2/pi^2/d^4*16*nu1^2; b=gamm/(gamm-1)*R/M; a=.5*Gw^2/pi^2/d^4*16*(R/M/P2)^2; y=poly([-c b a],'x','coeff'); T2=roots(y); disp(T2(2)-273,"temperature of discharging gas in (Celcius)");