//example 10.3 clc; funcprot(0); //exapple 10.3 // Initialization of Variable rho1=2600;//density lighter rho2=5100;//density heavier pd1=0.000015:0.000010:0.000095;//particle diameter lighter pd2=0.000025:0.00001:0.000095;//particle diameter heavier wp1=[0 22 35 47 59 68 75 81 100];//weight distribution lighter wp2=[0 21 33.5 48 57.5 67 75 100];//weight distribution heavier rho=998.6;//density water mu=1.03/1000;//viscosity water g=9.81; u=0.004;//velocity of water d=95/1000000;//paeticle diameter maximum //calculation //part 1 Re=d*u*rho/mu; d1=sqrt(18*mu*u/g/(rho1-rho)); d2=sqrt(18*mu*u/g/(rho2-rho)); function[a]=inter(d,f,g,b);//interpolation linear for i=1:b if d<=f(i+1)& d>f(i) then break else continue end break end a=(d-f(i))/(f(i+1)-f(i))*(g(i+1)-g(i))+g(i); endfunction [a]=inter(d1,pd1,wp1,9); [b]=inter(d2,pd2,wp2,8); v2=1/(1+5)*100-b/100*1/(1+5)*100; v1=5/(1+5)*100-a/100*5/(1+5)*100; pl2=(v2)/(v2+v1); disp(pl2, "The fraction of heavy ore remained in bottom"); //part 2 rho=1500; mu=6.25/10000; a=log10(2*d^3*rho*g*(rho1-rho)*3*mu^2);//log10(Re^2(R/rho/mu^2)) //using value from chart(graph) Re=10^0.2136; u=Re*mu/rho/d; d2=sqrt(18*mu*u/g/(rho1-rho)); [b]=inter(d2,pd2,wp2,8); disp(100-b+3.5,"The percentage of heavy ore left in this case"); //part 3 a=0.75//% of heavy ore in overhead product s=100*5/6/(100*5/6+0.75*100/6); disp(s,"the fraction of light ore in overhead product:"); //part 4 da=pd2(1); db=pd1(9); rho=(da^2*rho2-db^2*rho1)/(-db^2+da^2); disp(rho,"The minimum density required to seperate 2 ores in kg/m^3:")