//Example 4.8 clc disp("V_L = 230 V, R_a between lines = 1.8 ohm") disp("(V_oc)_line = 230 V, I_scc = 12.5 A for same I_f = 0.38 A") disp("The value of open circuit e.m.f is always line value unless and until specifically mentioned to be a phase value") disp("Therefore, Z_s = (V_oc)_ph / (I_scc)_ph |for same I_f") voc=230/sqrt(3) format(7) disp(voc," (V_oc)_ph(in V) =") zs=132.79/12.5 disp(zs,"Therefore, Z_s(in ohm/phase) =") disp("R_a between lines = 1.8 ohm") disp("For star connection, R_a between the terminals is 2 R_a per ph") disp("Therefore, 2R_a per ph = 1.8") disp("Therefore, R_a per ph = 0.9 ohm") xs=sqrt((10.623^2)-(0.9^2)) format(7) disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =") disp("Now regulated is asked for I_a = 10 A") disp("Now : The value of Z_s is calculated for I_s = 12.5 A and not at I_s = 10 A. It will be different for I_s = 10 A. But in this problem the test results are not given hence it is not possible to sketch the graphs to detemine Z_s at I_a = 10 A. So value of Z_s calculated is assumed to be same as I_a = 10 A") disp("(i) For 0.8 lagging p.f.") vph=230/sqrt(3) format(7) disp(vph,"V_ph(in V) = V_L/sqrt(3) =") disp("I_a = 10 A") disp("cos(phi) = 0.8 so sin(phi) = 0.6") disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)+(10*10.585))^2) p=sqrt(eph) format(8) disp(p,"Therefore, E_ph(in V) = ") regu=((218.39-132.79)/132.79)*100 format(6) disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") disp("(ii) For 0.8 leading p.f.") disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)-(10*10.585))^2) p=sqrt(eph) format(8) disp(p,"Therefore, E_ph(in V) = ") regu=((118.168-132.79)/132.79)*100 format(6) disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")