// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 7, Example 5") disp("Velocities are in m/s, temperature in Kelvin, Angles in degrees.") disp("Degree of reaction DOR = 0") disp("DOR = (T2-T3)/(T1-T3)") disp("Therefore T2 = T3") disp("From isentropic p–T relation for expansion") T01 = 1000; disp("P01/P03 = r") r = 1.8 T03a = T01/(r^0.249) disp("Using turbine efficiency") disp("T03 = T01-etat*(T01-T03a)") etat = 0.85; T03 = T01 - etat*(T01-T03a) disp("In order to find static temperature at turbine outlet, using static and stagnation temperature relation") C3 = 270; Cpg = 1.147; T3 = T03- C3^2 / (2*Cpg*1000) T2 = T3; disp("Dynamic Temperature in K is C^2 /2Cpg = Td") Td = 1000-T2 C2 = (2*Cpg*1000*Td)^0.5//m/s disp("Since Cpg*DeltaTos = U*(Cw3+Cw2) = U*Cw2 (Cw3=0)") U = 290; Cw2 = Cpg*1000*(1000-884)/U//m/s disp("From velocity triangle") alpha2 = asin(Cw2/C2)*180/%pi Ca2 = C2; beta2 = atan((Cw2-U)/(Ca2*cos(alpha2*%pi/180)))*180/%pi