// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 5, Example 7") disp("The following equation provides the relationship between the temperature rise and the desired angles:") disp("T02 - T01 = lambda*U*Ca*(tan(beta1) - tan(beta2))/Cp") disp("T02-T01 = Rise") Rise = 24; lambda = 0.93; U = 205; Ca = 155.5; Cp = 1005; disp("Dif = tan(beta1) - tan(beta2)") Dif = Rise*Cp/(U*lambda*Ca) disp("Using the degree of reaction equation:") disp("DOF = Ca*(tan(beta1) + tan(beta2))/(2*U)") disp("tan(beta1) + tan(beta2) = Add") DOF = 0.5; Add = DOF*2*U/Ca beta1 = atan((Add+Dif)/2)*180/%pi alpha2 = beta1 beta2 = atan(Add - tan(beta1*%pi/180))*180/%pi alpha1 = beta2 disp("The mean radius, rm, is given by: in m") N = 152;//rpm rm = U/(2*%pi*N) disp("The blade height, h in m, is given by: m = rho*ACa, where A is the annular area of the flow.") C1 = Ca/cos(alpha1*%pi/180) T01 = 290; disp("Static temperature in kelvin") T1 = T01- C1^2 /(2*Cp) disp("Using the isentropic P–T relation:") disp("Static pressure: P1 in bars") P01 = 1; P1 = P01*(T1/T01)^3.5 R = 287/1000; disp("Density rho1 in kg/m3") rho1 = P1/(R*T1) * 100 disp("From the continuity equation:") m = 22; A = m/(rho1*Ca) disp("and the blade height:") rm = 0.215; h =A/(2*%pi*rm)