// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 5, Example 15") disp("Angles are in degrees, lengths in meters, velocities in m/s, temperatures are in Kelvins") disp("Using Equation at the mean radius") disp("Wc = Cp(DeltaTA + DeltaTB) =DeltaTS") disp("Dif = T02-T01") Dif = 20; tau = 0.94; U = 200; Ca = 155; Cp = 1005; N = 8000; disp("tan(beta1)-tan(beta2) = Dift ------(A)") Dift = Dif*Cp/(tau*U*Ca) disp("Using Equation, the degree of reaction (DOF) is") disp("DOF = Ca*(tan(beta1)+tan(beta2))/(2U)") disp("tan(beta1)+tan(beta2) = Add ------(B)") DOF = 0.5; Add = DOF*2*U/Ca disp("Solving (A) and (B) equations simultaneously") beta1 = atan((Add+Dift)/2)*180/%pi alpha2 = beta1; beta2 = atan(1.29-tan(beta1*%pi/180))*180/%pi alpha1 = beta2; disp("Let rm be the mean radius") rm = U/(2*%pi*N)//m disp("Using continuity equation in order to find the annulus area of flow") C1 = Ca/cos(alpha1*%pi/180)//m/s T01 = 290; T1 = T01-C1^2 /(2*Cp) disp("Using isentropic relationship at inlet: p1/p01 = (T1/T01)^(gamma/(gamma-1))") disp("Static pressure is P1 in bars") P01 = 1; P1 = P01*(T1/T01)^3.5 disp("Density in kg/m3") R = 287; rho1 = P1/(R*T1) *10^5 disp("From the continuity equation,") m = 22;//kg A = m/(rho1*Ca) disp("blade height in m is") h = A/(2*%pi*rm) disp("At mean radius, and noting that blades beta, an equivalent to cascade, alpha, nominal air deflection is Epsilon") Epsilon = beta1-beta2 disp("Using Fig. Ex515 for cascade nominal deflection vs. air outlet angle, the solidity,") disp("s/c = 0.5") disp("Blade aspect ratio = span/chord") disp("Blade chord = C") C = 0.089/3 disp("Blade pitch = s") s = 0.5*C disp("Both the Chord and pitch/span are in meters")