// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 4, Example 13") disp("Let: rh = hub radius") disp(" rt = tip radius") disp("The flow area of the impeller inlet annulus is:") rh = 0.0625; rt = 0.125; A = %pi*(rt^2-rh^2); A1 = A + 0.0012 disp("Axial velocity can be determined from the continuity equation but since the inlet density (rho1) is unknown a trial and error method must be followed.") disp("Assuming a density based on the inlet stagnation condition,") P01 = 1; //in bars R = 287; T01 = 288;//K rho1 = P01*10^5 /(R*T01) disp("Using the continuity equation,") m = 5.5; Ca = m/(rho1*A1) disp("Since the whirl component at the inlet is zero, the absolute velocity at the inlet is C1 = Ca.") C1 = Ca; disp("The temperature equivalent of the velocity is: Eq") Cp = 1005; Eq = C1^2 /(2*Cp) T1 = T01 - Eq disp("Using isentropic P–T relationship,") P1 = P01*10^5 * (T1/T01)^3.5 /1000//kPa rho1a = P1*1000/(R*T1) * 1.004 Caa = m/(rho1a * A1) Eqa = Caa^2 /(2*Cp) * 1.003 T1a = T01 - Eqa P1a = P01*10^5 *(T1a/T01)^3.5 /1000 //kPa rho1b = P1a*1000/(R*T1a) disp("Further iterations are not required and the value of rho1b = 1.13kg/m3 may be taken as the inlet density and Ca = C1 as the inlet velocity. At the eye tip:") N = 16500;//rpm Uet = 2*%pi*rt*N/60//m/s disp("The blade angle at the eye tip:") betat = atan(Uet/Caa)*180/%pi disp("At the hub,") Ueh = 2*%pi*rh*N/60//m/s disp("The blade angle at the hub:") betah = atan(Ueh/Caa)*180/%pi disp("The Mach number based on the relative velocity at the eye tip using the inlet velocity triangle is:") U1 = 216; V1 = (Caa^2+U1^2)^0.5 disp("The relative Mach number") gamma = 1.4; M1 = V1/(gamma*R*T1a)^0.5 disp("A very small factor is multiplied to make approximity")