// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 3, Example 6") disp("Refering Figure") disp("Hydraulic Efficiency etah = Power output/Energy available in the jet = P/(0.5mC1^2)") disp("At entry to nozzle") H = 610-46//in m Cv = 0.98; g = 9.81; disp("Using nozzle velocity coefficient C1") C1 = Cv * (2*g*H)^0.5 disp("Now W/m = U1Cw1 - U2Cw2 =U {(U + V1)-[U-V2cos(180 -alpha)]}= U[(C1 - U)(1 - k cos (alpha))] where V2 = kV1") disp("Therefore W/m") Wm = 0.46*C1*(C1-0.46*C1)*(1-0.99*cos(165*%pi/180)) etah = Wm/(0.5*103*103) disp("Actual hydraulic efficiency") etaha = 0.91*etah disp("Wheel bucket speed") s = 0.46*C1 disp("Wheel rotational speed N") N = s*60/(0.445*2*%pi) disp("Actual hydraulic efficiency") disp("ΒΌ Actual power/energy in the jet = (1260 * 10^3)/(0.5mC1^2)") disp("Therefore") m = 1260*1000/(0.882*0.5*103*103) disp("For one nozzle,m") mone = m/2 disp("For nozzle diameter, using continuity equation, m") disp("m = rho*C1*A = rho*C1*pi*d^2/4") disp("Hence, d in mm") d = (mone*4/(%pi*103*1000))^0.5 *1000